Modularized the code

Everything in goof-impl.scm is portable (r7rs) syntax-rules. The non-portable parts
, most notably the let-kw-form macro is in the module definition goof.scm.
This commit is contained in:
Linus 2021-01-28 20:01:24 +01:00
parent 969b9a029a
commit 06a11fc892
2 changed files with 543 additions and 517 deletions

534
goof-impl.scm Normal file
View file

@ -0,0 +1,534 @@
;; goof-impl.scm - portable parts of goof loop..
;;
;; Copyright 2020 Linus Björnstam
;; Copyright 2000-2015 Alex Shinn (original author of chibi-loop)
;; All rights reserved.
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions
;; are met:
;; 1. Redistributions of source code must retain the above copyright
;; notice, this list of conditions and the following disclaimer.
;; 2. Redistributions in binary form must reproduce the above copyright
;; notice, this list of conditions and the following disclaimer in the
;; documentation and/or other materials provided with the distribution.
;; 3. The name of the author(s) may not be used to endorse or promote products
;; derived from this software without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
;; IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
;; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
;; IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
;; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
;; NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
;; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
;; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
;; THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
(define-aux-syntaxes
;; Auxiliary syntax for the loop clauses
:when :unless :break :final :let :let* :subloop :for :acc
;; Auxiliary syntax for the iterators.
:gen
;; auxiliary auxiliary syntax
;; for vectoring
:length :fill
;; Internal syntax. %acc is turned into :acc by the forify macro
;; it is used make it possible to report an error if :acc is used in
;; one of the simple macros.
%acc
)
(include "goof/iterators.scm")
(define-syntax loop
(syntax-rules (=>)
((loop () => expr body ...)
(loop ((:for ensure-once (up-from 0 1))) => expr body ...))
((loop () body ...)
(loop ((:for ensure-once (up-from 0 1))) body ...))
((loop name () => expr body ...)
(loop name ((:for ensure-once (up-from 0 1))) => expr body ...))
((loop name () body ...)
(loop name ((:for ensure-once (up-from 0 1))) body ...))
((loop (clauses ...) body ...)
(ensure-for-clause (loop (clauses ...) body ...)
loop-name (clauses ...)
body ... (loop-name)))
((loop name (clauses ...) . body)
(ensure-for-clause (loop name (clauses ...) . body)
name
(clauses ...)
. body))))
;; Should this check for more?
(define-syntax ensure-for-clause
(syntax-rules (:for :acc :break :subloop :when :unless :final :let :let*)
((_ orig name ((:for for-rest ...) clauses ...) . body)
(cl orig name
(()) (()) (()) (()) (()) () ((() ())) (()) (()) (()) ()
((:for for-rest ...) clauses ...) . body))
((_ orig rest ...)
(syntax-error "First clause must be a :for clause" orig))))
(define-syntax push-new-subloop
(syntax-rules ()
((_ orig name (lets ...) (accs ...) (vars ...) (checks ...) (refs ...) f (((ff-cur ...) (ff-above ...)) . ff-rest)
(ul ...) (uw ...) (ub ...) uf clauses . body)
(cl orig name
(() lets ...)
(() accs ...)
(() vars ...)
(() checks ...)
(() refs ...)
f
;; propagate :for-finalizers to subloop to be run in case of :break
((() (ff-cur ... ff-above ...)) ((ff-cur ...) (ff-above ...)) . ff-rest)
(() ul ...)
(() uw ...)
(() ub ...)
uf
clauses . body))))
;; Clauses sorts all the clauses into subloops and positions everything where it should be.
(define-syntax cl
(syntax-rules (=> :for :acc :when :unless :break :final :let :let* :subloop)
((_ orig name l a v c r f ff ul uw ub uf () => expr . body)
(emit orig name l a v c r f ff ul uw ub uf expr . body))
((_ orig name l a v c r f ff ul uw ub uf () . body)
(emit orig name l a v c r f ff ul uw ub uf (if #f #f) . body))
;; USER LETS
((_ orig name l a v c r f ff ((cur-ul ...) . ul-rest) uw ub uf (:let (id id* ... expr) clauses ...) . body)
(cl orig name l a v c r f ff ((cur-ul ... (:let id id* ... expr)) . ul-rest) uw ub uf (clauses ...) . body))
((_ orig name l a v c r f ff ((cur-ul ...) . ul-rest) uw ub uf (:let* (id id* ... expr) clauses ...) . body)
(cl orig name l a v c r f ff ((cur-ul ... (:let* id id* ... expr)) . ul-rest) uw ub uf (clauses ...) . body))
;; user-whens
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:when test clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... test) . uw-rest) ub uf (clauses ...) . body))
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:unless test clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... (not test)) . uw-rest) ub uf (clauses ...) . body))
;; USER BREAKS
;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards.
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ((cur-ub ...) . ub-rest) uf (:break expr clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ((cur-ub ... expr) . ub-rest) uf (clauses ...) . body))
;; user final
;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards.
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub (cur-uf ...) (:final expr clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ub (cur-uf ... expr) (clauses ...) . body))
;; Explicit subloop. Shorthand for (:when #t)
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:subloop clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ub uf (clauses ...) . body))
;; :for-clauses
;; found a for clause when we have a :when or :unless clause. Push new subloop
((_ orig name l a v c r f ff ul ((uw uw* ...) . uw-rest) ub uf ((:for for-rest ...) clauses ...) . body)
(push-new-subloop orig name l a v c r f ff ul ((uw uw* ...) . uw-rest) ub uf ((:for for-rest ...) clauses ...) . body))
;; For clause with a sequence creator.
((_ orig name l a v c r f ff ul uw ub uf ((:for id ids ... (iterator source ...)) clauses ...) . body)
(iterator ((id ids ...) (source ...)) cl-next/for orig name l a v c r f ff ul uw ub uf (clauses ...) . body))
;; accumulator clause
((_ orig name l a v c r f ff ul uw ub uf ((:acc id ids ... (accumulator source ...)) clauses ...) . body)
(accumulator :acc ((id ids ...) (source ...)) cl-next/acc orig name l a v c r f ff ul uw ub uf (clauses ...) . body))
;; ERROR HANDLING?
((_ orig name l a v c r f ff ul uw ub uf (clause . rest) . body)
(syntax-error "Invalid clause in loop" clause orig))
))
;; HOLY CODE-DUPLICATION-BATMAN!
;; cl-next/acc integrates all the bindings by an :acc clause. The complexity comes from pushing :acc-clauses
;; into the outer loops. Since accumulators need to be available in the (final-fun ...), they need to be visible also
;; in the outer loops if the loop exits there.
(define-syntax cl-next/acc
(syntax-rules (:acc)
;; :acc clause without any subloops
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
((lets ...))
((accs ...))
vars
((checks ...))
((refs ...))
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
((lets ... new-lets ...))
((accs ... (accvar accinit accupdate) ...))
vars
((checks ... new-checks ...))
((refs ... new-refs ...))
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))
;; We have ONE subloop!
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
(lets ... (outermost-lets ...))
((accs ...) ((oldacc oldinit oldupdate) ...))
vars
((checks ...) . checks-rest)
((refs ...) . refs-rest)
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
(lets ... (outermost-lets ... new-lets ...))
((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accinit accvar) ...))
vars
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))
;; We have several subloops!
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
(lets ... (outermost-lets ...))
((accs ...) ((oldacc oldinit oldupdate) ...) ... ((oldestacc oldestinit oldestupdate) ...))
vars
((checks ...) . checks-rest)
((refs ...) . refs-rest)
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
(lets ... (outermost-lets ... new-lets ...))
((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accvar accvar) ...) ...
((oldestacc oldestinit oldestupdate) ... (accvar accinit accvar) ...))
vars
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))))
;; Integrating for clauses is not as involved, since they only want to be introduced into the current
;; loop. Any propagation of for finalizers (ff) is done by push-new-subloop
(define-syntax cl-next/for
(syntax-rules ()
((_ (new-lets ...) (new-vars ...) (new-checks ...) (new-refs ...) (new-for-finals ...)
orig name
((lets ...) . lets-rest)
accs
((vars ...) . vars-rest)
((checks ...) . checks-rest)
((refs ...) . refs-rest)
finals
(((ff-cur ...) (ff-above ...)) . ff-rest)
ul uw ub uf clauses . body)
(cl orig name
((lets ... new-lets ...) . lets-rest)
accs
((vars ... new-vars ...) . vars-rest)
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
finals
(((ff-cur ... new-for-finals ...) (ff-above ...)) . ff-rest)
ul uw ub uf clauses . body))
((cl err ...)
'(cl err ...))))
(define-syntax user-let
(syntax-rules (:let :let*)
((_ () () () body ...)
(begin body ...))
((_ (lets ...) () () . body)
(let (lets ...)
. body))
((_ () (stars ...) () . body)
(let* (stars ...) . body))
;; These twe clauses handle let type changes.
((_ () (stars ... last) ((:let id id* ... expr) clauses ...) . body)
(let* (stars ...)
(user-let (last (id id* ... expr)) () (clauses ...) . body)))
((_ (lets ...) () ((:let* id id* ... expr) clauses ...) . body)
(let (lets ...)
(user-let () ((id id* ... expr)) (clauses ...) . body)))
;; 2 clauses new of the same that already existed
((_ (lets ...) () ((:let id id* ... expr) clauses ...) . body)
(user-let (lets ... (id id* ... expr)) () (clauses ...) . body))
((_ () (stars ...) ((:let* id id* ... expr) clauses ...) . body)
(user-let () (stars ... (id id* ... expr)) (clauses ...) . body))))
;; If there is no subloops, we emit to the simple case
(define-syntax emit
(syntax-rules ()
((_ orig name (one) . rest)
(emit-one orig name (one) . rest))
((_ orig name . rest)
(emit-many/first #f name . rest))))
(define-syntax emit-one
(syntax-rules ()
((_ orig name
((lets ...))
(((accvar accinit accstep) ...))
(((var init step) ...))
((checks ...))
((refs ...))
((final-binding final-value) ...)
(((ff-cur ...) (ff-above ...)))
((user-lets ...)) ((user-whens ...)) ((user-breaks ...)) uf
final-expr . body)
(let* (lets ...)
(define (final-fun final-binding ...)
final-expr)
(define (loopy-loop accvar ... var ...)
(if (or checks ...)
(begin
ff-cur ...
(final-fun final-value ...))
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(let-kw-form name
(final-fun final-value ...)
uf
(loopy-loop (accvar accstep) ... (var step) ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
(final-fun final-value ...))
(else
(let () (if #f #f) . body))))
(loopy-loop accvar ... step ...) )))))
(loopy-loop accinit ... init ...)))))
;; Emit-many/first emits the outermost let loop and binds the final lambda.
(define-syntax emit-many/first
(syntax-rules ()
((_ orig name
(lets-next ... (lets ...))
(accs-next ... ((accvar accinit accstep) ...))
(vars-next ... ((var init step) ...))
(checks-next ... (checks ...))
(refs-next ... (refs ...))
((final-binding final-value) ...)
(ff-next ... ((ff-cur ...) ()))
(ul-next ... (user-lets ...))
(uw-next ... (user-whens ...))
(ub-next ... (user-breaks ...))
uf
final-expr
. body)
(let* ((final-fun (lambda (final-binding ...) final-expr))
lets ...)
(let outer-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
(final-fun final-value ...))
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-cur ...
(final-fun final-value ...))
(else (emit-many/rest orig
name
(outer-loop accstep ... step ...)
(lets-next ...)
(accs-next ...)
(vars-next ...)
(checks-next ...)
(refs-next ...)
;; THIS IS NOW A COMPLETE call to final
(final-fun final-value ...)
(ff-next ...)
(ul-next ...)
(uw-next ...)
(ub-next ...)
uf
. body)))
(outer-loop accvar ... step ...))))))))))
(define-syntax emit-many/rest
(syntax-rules ()
;; match innermost loop
((_ orig
name
outer
((lets ...))
(((accvar accinit accstep) ...))
(((var init step) ...))
((checks ...))
((refs ...))
final
(((ff-cur ...) (ff-above ...)))
((user-lets ...))
((user-whens ...))
((user-breaks ...))
uf
. body)
(let* (lets ...)
(let innermost-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
outer)
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
final)
(else
(let-kw-form name final uf (innermost-loop (accvar accstep) ... (var step) ...)
. body)))
(innermost-loop accvar ... step ...))))))))
;; Any intermediate loops
((_ orig
name
outer
(next-lets ... (lets ...))
(next-accs ... ((accvar accinit accstep) ...))
(next-vars ... ((var init step) ...))
(next-checks ... (checks ...))
(next-refs ... (refs ...))
final
(next-ff ... ((ff-cur ...) (ff-above ...)))
(ul-next ... (user-lets ...))
(uw-next ... (user-whens ...))
(ub-next ... (user-breaks ...))
uf
. body)
(let* (lets ...)
(let intermediate-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
outer)
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
final)
(else (emit-many/rest orig
name
(intermediate-loop accstep ... step ...)
(next-lets ...)
(next-accs ...)
(next-vars ...)
(next-checks ...)
(next-refs ...)
final
(next-ff ...)
(ul-next ...)
(uw-next ...)
(ub-next ...)
uf
. body)))
(intermediate-loop accvar ... step ...))))))))))
(define-syntax forify
(syntax-rules (:for :acc :when :unless :break :final :subloop :let :let* %acc)
((forify o n done-clauses () . body)
(cl 1 n
(()) (()) (()) (()) (()) () ((() ())) (()) (()) (()) ()
done-clauses . body))
((_ o n (s ...) ((:for c-rest ...) clauses ...) . body)
(forify o n (s ... (:for c-rest ...)) (clauses ...) . body))
((_ o n (s ...) (:when expr clauses ...) . body)
(forify o n (s ... :when expr) (clauses ...) . body))
((_ o n (s ...) (:unless expr clauses ...) . body)
(forify o n (s ... :when expr) (clauses ...) . body))
((_ o n (s ...) (:break expr clauses ...) . body)
(forify o n (s ... :break expr) (clauses ...) . body))
((_ o n (s ...) (:final expr clauses ...) . body)
(forify o n (s ... :final expr) (clauses ...) . body))
((_ o n (s ...) (:subloop clauses ...) . body)
(forify o n (s ... :subloop) (clauses ...) . body))
((_ o n (s ...) ((:let id id* ... expr) clauses ...) . body)
(forify o n (s ... (:let id id* ... expr)) (clauses ...) . body))
((_ o n (s ...) ((:let* id id* ... expr) clauses ...) . body)
(forify o n (s ... (:let* id id* ... expr)) (clauses ...) . body))
((_ o n (s ...) ((%acc c-rest ...) clauses ...) . body)
(forify o n (s ... (:acc c-rest ...)) (clauses ...) . body))
((_ o n (s ...) ((:acc c-rest ...) clauses ...) . body)
(syntax-error "Accumulating clauses are not allowed in simplified loop forms." o))
((_ o n (s ...) ((id id* ... (iterator source ...)) clauses ...) . body)
(forify o n (s ... (:for id id* ... (iterator source ...))) (clauses ...) . body))))
(define-syntax loop/list
(syntax-rules ()
((_ (clauses ...) body ...)
(forify (loop/list (clauses ...) body ...)
loop-name () (clauses ...)
=> '()
(cons (let () body ...) (loop-name))))))
(define-syntax loop/sum
(syntax-rules ()
((_ (clauses ...) body ...)
(forify (loop-sum (clauses ...) body ...)
loop-name
() (clauses ... (%acc acc (summing (let () body ...))))
=> acc
(loop-name)))))
(define-syntax loop/product
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
product-loop () (clauses ... (%acc acc (multiplying (let () body ...))))
=> acc
(product-loop)))))
(define sentinel (list 'unique))
;; TODO: maybe have a look at the expansion of this. It seems weird.
(define-syntax loop/first
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
loop/first
() (clauses ... :final #t)
=> #f
body ...))))
(define-syntax loop/last
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
loop-name (clauses ... (%acc acc (folding sentinel)))
=> (if (eq? sentinel acc) #f acc)
(let ((result (let () body ...)))
(loop-name (=> acc result)))))))
(define-syntax loop/and
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
and-loop
() (clauses ... (%acc acc (folding #t)))
=> acc
(let ((res (let () body ...)))
(and res (and-loop (=> acc res))))))))
(define-syntax loop/or
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
or-loop
() (clauses ...)
=> #f
(or (let () body ...) (or-loop))))))

526
goof.scm
View file

@ -1,8 +1,6 @@
;; goof loop - a bastardisation of chibi loop.
;;
;; Copyright 2020 Linus Björnstam
;; Copyright 2000-2015 Alex Shinn (original author of chibi-loop)
;; All rights reserved.
;; Copyright 2020, 2021 Linus Björnstam
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions
@ -26,7 +24,6 @@
;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
;; THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;; This is a looping construct obviously based on (chibi loop) (aka:
;; foof-loop) by Alex Shinn. The name goof-loop is a play on that
;; name, and the fact that I goofed in the chibi issue tracker when
@ -82,417 +79,8 @@
in-indexed
))
(define-aux-syntaxes
;; Auxiliary syntax for the loop clauses
:when :unless :break :final :let :let* :subloop :for :acc
;; Auxiliary syntax for the iterators.
:gen
;; auxiliary auxiliary syntax
;; for vectoring
:length :fill
;; Internal syntax. %acc is turned into :acc by the forify macro
;; it is used make it possible to report an error if :acc is used in
;; one of the simple macros.
%acc
)
(include "goof/iterators.scm")
(define-syntax loop
(syntax-rules (=>)
((loop () => expr body ...)
(loop ((:for ensure-once (up-from 0 1))) => expr body ...))
((loop () body ...)
(loop ((:for ensure-once (up-from 0 1))) body ...))
((loop name () => expr body ...)
(loop name ((:for ensure-once (up-from 0 1))) => expr body ...))
((loop name () body ...)
(loop name ((:for ensure-once (up-from 0 1))) body ...))
((loop (clauses ...) body ...)
(ensure-for-clause (loop (clauses ...) body ...)
loop-name (clauses ...)
body ... (loop-name)))
((loop name (clauses ...) . body)
(ensure-for-clause (loop name (clauses ...) . body)
name
(clauses ...)
. body))))
;; Should this check for more?
(define-syntax ensure-for-clause
(syntax-rules (:for :acc :break :subloop :when :unless :final :let :let*)
((_ orig name ((:for for-rest ...) clauses ...) . body)
(cl orig name
(()) (()) (()) (()) (()) () ((() ())) (()) (()) (()) ()
((:for for-rest ...) clauses ...) . body))
((_ orig rest ...)
(syntax-error "First clause must be a :for clause" orig))))
(define-syntax push-new-subloop
(syntax-rules ()
((_ orig name (lets ...) (accs ...) (vars ...) (checks ...) (refs ...) f (((ff-cur ...) (ff-above ...)) . ff-rest)
(ul ...) (uw ...) (ub ...) uf clauses . body)
(cl orig name
(() lets ...)
(() accs ...)
(() vars ...)
(() checks ...)
(() refs ...)
f
;; propagate :for-finalizers to subloop to be run in case of :break
((() (ff-cur ... ff-above ...)) ((ff-cur ...) (ff-above ...)) . ff-rest)
(() ul ...)
(() uw ...)
(() ub ...)
uf
clauses . body))))
;; Clauses sorts all the clauses into subloops and positions everything where it should be.
(define-syntax cl
(syntax-rules (=> :for :acc :when :unless :break :final :let :let* :subloop)
((_ orig name l a v c r f ff ul uw ub uf () => expr . body)
(emit orig name l a v c r f ff ul uw ub uf expr . body))
((_ orig name l a v c r f ff ul uw ub uf () . body)
(emit orig name l a v c r f ff ul uw ub uf (if #f #f) . body))
;; USER LETS
((_ orig name l a v c r f ff ((cur-ul ...) . ul-rest) uw ub uf (:let (id id* ... expr) clauses ...) . body)
(cl orig name l a v c r f ff ((cur-ul ... (:let id id* ... expr)) . ul-rest) uw ub uf (clauses ...) . body))
((_ orig name l a v c r f ff ((cur-ul ...) . ul-rest) uw ub uf (:let* (id id* ... expr) clauses ...) . body)
(cl orig name l a v c r f ff ((cur-ul ... (:let* id id* ... expr)) . ul-rest) uw ub uf (clauses ...) . body))
;; user-whens
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:when test clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... test) . uw-rest) ub uf (clauses ...) . body))
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:unless test clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... (not test)) . uw-rest) ub uf (clauses ...) . body))
;; USER BREAKS
;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards.
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ((cur-ub ...) . ub-rest) uf (:break expr clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ((cur-ub ... expr) . ub-rest) uf (clauses ...) . body))
;; user final
;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards.
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub (cur-uf ...) (:final expr clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ub (cur-uf ... expr) (clauses ...) . body))
;; Explicit subloop. Shorthand for (:when #t)
((_ orig name l a v c r f ff ul ((cur-uw ...) . uw-rest) ub uf (:subloop clauses ...) . body)
(cl orig name l a v c r f ff ul ((cur-uw ... #t) . uw-rest) ub uf (clauses ...) . body))
;; :for-clauses
;; found a for clause when we have a :when or :unless clause. Push new subloop
((_ orig name l a v c r f ff ul ((uw uw* ...) . uw-rest) ub uf ((:for for-rest ...) clauses ...) . body)
(push-new-subloop orig name l a v c r f ff ul ((uw uw* ...) . uw-rest) ub uf ((:for for-rest ...) clauses ...) . body))
;; For clause with a sequence creator.
((_ orig name l a v c r f ff ul uw ub uf ((:for id ids ... (iterator source ...)) clauses ...) . body)
(iterator ((id ids ...) (source ...)) cl-next/for orig name l a v c r f ff ul uw ub uf (clauses ...) . body))
;; accumulator clause
((_ orig name l a v c r f ff ul uw ub uf ((:acc id ids ... (accumulator source ...)) clauses ...) . body)
(accumulator :acc ((id ids ...) (source ...)) cl-next/acc orig name l a v c r f ff ul uw ub uf (clauses ...) . body))
;; ERROR HANDLING?
((_ orig name l a v c r f ff ul uw ub uf (clause . rest) . body)
(syntax-error "Invalid clause in loop" clause orig))
))
;; HOLY CODE-DUPLICATION-BATMAN!
;; cl-next/acc integrates all the bindings by an :acc clause. The complexity comes from pushing :acc-clauses
;; into the outer loops. Since accumulators need to be available in the (final-fun ...), they need to be visible also
;; in the outer loops if the loop exits there.
(define-syntax cl-next/acc
(syntax-rules (:acc)
;; :acc clause without any subloops
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
((lets ...))
((accs ...))
vars
((checks ...))
((refs ...))
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
((lets ... new-lets ...))
((accs ... (accvar accinit accupdate) ...))
vars
((checks ... new-checks ...))
((refs ... new-refs ...))
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))
;; We have ONE subloop!
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
(lets ... (outermost-lets ...))
((accs ...) ((oldacc oldinit oldupdate) ...))
vars
((checks ...) . checks-rest)
((refs ...) . refs-rest)
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
(lets ... (outermost-lets ... new-lets ...))
((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accinit accvar) ...))
vars
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))
;; We have several subloops!
((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...)
orig name
(lets ... (outermost-lets ...))
((accs ...) ((oldacc oldinit oldupdate) ...) ... ((oldestacc oldestinit oldestupdate) ...))
vars
((checks ...) . checks-rest)
((refs ...) . refs-rest)
(finals ...)
ff ul uw ub uf clauses . body)
(cl orig name
(lets ... (outermost-lets ... new-lets ...))
((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accvar accvar) ...) ...
((oldestacc oldestinit oldestupdate) ... (accvar accinit accvar) ...))
vars
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
(finals ... new-finals ...)
ff ul uw ub uf clauses . body))))
;; Integrating for clauses is not as involved, since they only want to be introduced into the current
;; loop. Any propagation of for finalizers (ff) is done by push-new-subloop
(define-syntax cl-next/for
(syntax-rules ()
((_ (new-lets ...) (new-vars ...) (new-checks ...) (new-refs ...) (new-for-finals ...)
orig name
((lets ...) . lets-rest)
accs
((vars ...) . vars-rest)
((checks ...) . checks-rest)
((refs ...) . refs-rest)
finals
(((ff-cur ...) (ff-above ...)) . ff-rest)
ul uw ub uf clauses . body)
(cl orig name
((lets ... new-lets ...) . lets-rest)
accs
((vars ... new-vars ...) . vars-rest)
((checks ... new-checks ...) . checks-rest)
((refs ... new-refs ...) . refs-rest)
finals
(((ff-cur ... new-for-finals ...) (ff-above ...)) . ff-rest)
ul uw ub uf clauses . body))
((cl err ...)
'(cl err ...))))
(define-syntax user-let
(syntax-rules (:let :let*)
((_ () () () body ...)
(begin body ...))
((_ (lets ...) () () . body)
(let (lets ...)
. body))
((_ () (stars ...) () . body)
(let* (stars ...) . body))
;; These twe clauses handle let type changes.
((_ () (stars ... last) ((:let id id* ... expr) clauses ...) . body)
(let* (stars ...)
(user-let (last (id id* ... expr)) () (clauses ...) . body)))
((_ (lets ...) () ((:let* id id* ... expr) clauses ...) . body)
(let (lets ...)
(user-let () ((id id* ... expr)) (clauses ...) . body)))
;; 2 clauses new of the same that already existed
((_ (lets ...) () ((:let id id* ... expr) clauses ...) . body)
(user-let (lets ... (id id* ... expr)) () (clauses ...) . body))
((_ () (stars ...) ((:let* id id* ... expr) clauses ...) . body)
(user-let () (stars ... (id id* ... expr)) (clauses ...) . body))))
;; If there is no subloops, we emit to the simple case
(define-syntax emit
(syntax-rules ()
((_ orig name (one) . rest)
(emit-one orig name (one) . rest))
((_ orig name . rest)
(emit-many/first #f name . rest))))
(define-syntax emit-one
(syntax-rules ()
((_ orig name
((lets ...))
(((accvar accinit accstep) ...))
(((var init step) ...))
((checks ...))
((refs ...))
((final-binding final-value) ...)
(((ff-cur ...) (ff-above ...)))
((user-lets ...)) ((user-whens ...)) ((user-breaks ...)) uf
final-expr . body)
(let* (lets ...)
(define (final-fun final-binding ...)
final-expr)
(define (loopy-loop accvar ... var ...)
(if (or checks ...)
(begin
ff-cur ...
(final-fun final-value ...))
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(let-kw-form name
(final-fun final-value ...)
uf
(loopy-loop (accvar accstep) ... (var step) ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
(final-fun final-value ...))
(else
(let () (if #f #f) . body))))
(loopy-loop accvar ... step ...) )))))
(loopy-loop accinit ... init ...)))))
;; Emit-many/first emits the outermost let loop and binds the final lambda.
(define-syntax emit-many/first
(syntax-rules ()
((_ orig name
(lets-next ... (lets ...))
(accs-next ... ((accvar accinit accstep) ...))
(vars-next ... ((var init step) ...))
(checks-next ... (checks ...))
(refs-next ... (refs ...))
((final-binding final-value) ...)
(ff-next ... ((ff-cur ...) ()))
(ul-next ... (user-lets ...))
(uw-next ... (user-whens ...))
(ub-next ... (user-breaks ...))
uf
final-expr
. body)
(let* ((final-fun (lambda (final-binding ...) final-expr))
lets ...)
(let outer-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
(final-fun final-value ...))
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-cur ...
(final-fun final-value ...))
(else (emit-many/rest orig
name
(outer-loop accstep ... step ...)
(lets-next ...)
(accs-next ...)
(vars-next ...)
(checks-next ...)
(refs-next ...)
;; THIS IS NOW A COMPLETE call to final
(final-fun final-value ...)
(ff-next ...)
(ul-next ...)
(uw-next ...)
(ub-next ...)
uf
. body)))
(outer-loop accvar ... step ...))))))))))
(define-syntax emit-many/rest
(syntax-rules ()
;; match innermost loop
((_ orig
name
outer
((lets ...))
(((accvar accinit accstep) ...))
(((var init step) ...))
((checks ...))
((refs ...))
final
(((ff-cur ...) (ff-above ...)))
((user-lets ...))
((user-whens ...))
((user-breaks ...))
uf
. body)
(let* (lets ...)
(let innermost-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
outer)
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
final)
(else
(let-kw-form name final uf (innermost-loop (accvar accstep) ... (var step) ...)
. body)))
(innermost-loop accvar ... step ...))))))))
;; Any intermediate loops
((_ orig
name
outer
(next-lets ... (lets ...))
(next-accs ... ((accvar accinit accstep) ...))
(next-vars ... ((var init step) ...))
(next-checks ... (checks ...))
(next-refs ... (refs ...))
final
(next-ff ... ((ff-cur ...) (ff-above ...)))
(ul-next ... (user-lets ...))
(uw-next ... (user-whens ...))
(ub-next ... (user-breaks ...))
uf
. body)
(let* (lets ...)
(let intermediate-loop ((accvar accinit) ...
(var init) ...)
(if (or checks ...)
(begin
ff-cur ...
outer)
(ref-let (refs ...)
(user-let () () (user-lets ...)
(if (and user-whens ...)
(cond
((or user-breaks ...)
ff-above ... ff-cur ...
final)
(else (emit-many/rest orig
name
(intermediate-loop accstep ... step ...)
(next-lets ...)
(next-accs ...)
(next-vars ...)
(next-checks ...)
(next-refs ...)
final
(next-ff ...)
(ul-next ...)
(uw-next ...)
(ub-next ...)
uf
. body)))
(intermediate-loop accvar ... step ...))))))))))
;; This contains the portable parts of goof-loop.
(include "goof-impl.scm")
;; Helper procedures for let-kw-form
(define (syntax= s1 s2)
@ -506,9 +94,6 @@
(else
(cons (car params) (update-name (cdr params) name val)))))
(define (syntax->list stx)
(syntax-case stx ()
((a ...) #'(a ...))))
(define-syntax inner-recur
(syntax-rules ()
@ -519,7 +104,12 @@
(if (or user-finals ...)
final-fun
(loop-name v ...))))))
(define (syntax->list stx)
(syntax-case stx ()
((a ...) #'(a ...))))
(define-syntax let-kw-form
(syntax-rules ()
@ -542,101 +132,6 @@
(define-syntax forify
(syntax-rules (:for :acc :when :unless :break :final :subloop :let :let* %acc)
((forify o n done-clauses () . body)
(cl 1 n
(()) (()) (()) (()) (()) () ((() ())) (()) (()) (()) ()
done-clauses . body))
((_ o n (s ...) ((:for c-rest ...) clauses ...) . body)
(forify o n (s ... (:for c-rest ...)) (clauses ...) . body))
((_ o n (s ...) (:when expr clauses ...) . body)
(forify o n (s ... :when expr) (clauses ...) . body))
((_ o n (s ...) (:unless expr clauses ...) . body)
(forify o n (s ... :when expr) (clauses ...) . body))
((_ o n (s ...) (:break expr clauses ...) . body)
(forify o n (s ... :break expr) (clauses ...) . body))
((_ o n (s ...) (:final expr clauses ...) . body)
(forify o n (s ... :final expr) (clauses ...) . body))
((_ o n (s ...) (:subloop clauses ...) . body)
(forify o n (s ... :subloop) (clauses ...) . body))
((_ o n (s ...) ((:let id id* ... expr) clauses ...) . body)
(forify o n (s ... (:let id id* ... expr)) (clauses ...) . body))
((_ o n (s ...) ((:let* id id* ... expr) clauses ...) . body)
(forify o n (s ... (:let* id id* ... expr)) (clauses ...) . body))
((_ o n (s ...) ((%acc c-rest ...) clauses ...) . body)
(forify o n (s ... (:acc c-rest ...)) (clauses ...) . body))
((_ o n (s ...) ((:acc c-rest ...) clauses ...) . body)
(syntax-error "Accumulating clauses are not allowed in simplified loop forms." o))
((_ o n (s ...) ((id id* ... (iterator source ...)) clauses ...) . body)
(forify o n (s ... (:for id id* ... (iterator source ...))) (clauses ...) . body))))
(define-syntax loop/list
(syntax-rules ()
((_ (clauses ...) body ...)
(forify (loop/list (clauses ...) body ...)
loop-name () (clauses ...)
=> '()
(cons (let () body ...) (loop-name))))))
(define-syntax loop/sum
(syntax-rules ()
((_ (clauses ...) body ...)
(forify (loop-sum (clauses ...) body ...)
loop-name
() (clauses ... (%acc acc (summing (let () body ...))))
=> acc
(loop-name)))))
(define-syntax loop/product
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
product-loop () (clauses ... (%acc acc (multiplying (let () body ...))))
=> acc
(product-loop)))))
(define sentinel (list 'unique))
;; TODO: maybe have a look at the expansion of this. It seems weird.
(define-syntax loop/first
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
loop/first
() (clauses ... :final #t)
=> #f
body ...))))
(define-syntax loop/last
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
loop-name (clauses ... (%acc acc (folding sentinel)))
=> (if (eq? sentinel acc) #f acc)
(let ((result (let () body ...)))
(loop-name (=> acc result)))))))
(define-syntax loop/and
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
and-loop
() (clauses ... (%acc acc (folding #t)))
=> acc
(let ((res (let () body ...)))
(and res (and-loop (=> acc res))))))))
(define-syntax loop/or
(syntax-rules ()
((n (clauses ...) body ...)
(forify (n (clauses ...) body ...)
or-loop
() (clauses ...)
=> #f
(or (let () body ...) (or-loop))))))
(define-syntax loop/list/parallel
(syntax-rules ()
((n (clauses ...) body ...)
@ -647,6 +142,3 @@
(:acc futures2 (listing-reverse (touch future))))
=> futures2)
(parallel-list-loop)))))