;; goof-impl.scm - portable parts of goof loop.. ;; ;; Copyright 2020 Linus Björnstam ;; Copyright 2000-2015 Alex Shinn (original author of chibi-loop) ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions ;; are met: ;; 1. Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; 2. Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; 3. The name of the author(s) may not be used to endorse or promote products ;; derived from this software without specific prior written permission. ;; ;; THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ;; IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ;; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ;; IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ;; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ;; NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ;; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ;; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ;; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ;; THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. (define-aux-syntaxes ;; Auxiliary syntax for the loop clauses :when :unless :break :final :bind :subloop :for :acc ;; Auxiliary syntax for the iterators. :gen ;; auxiliary auxiliary syntax ;; for vectoring :length :fill ;;for up-from and down-to :to :by ;; Internal syntax. %acc is turned into :acc by the forify macro ;; it is used make it possible to report an error if :acc is used in ;; one of the simple macros. %acc ;; nop. Used by CL :nop) (include "goof/iterators.scm") (define-syntax loop (syntax-rules () ((loop . rest) (%loop (loop . rest) . rest)))) (define-syntax %loop (syntax-rules (=>) ((%loop o () => expr body ...) (%loop o ((:for ensure-once (up-from 0 1))) => expr body ...)) ((%loop o () body ...) (%loop o ((:for ensure-once (up-from 0 1))) body ...)) ((%loop o name () => expr body ...) (%loop o name ((:for ensure-once (up-from 0 1))) => expr body ...)) ((%loop o name () body ...) (%loop o name ((:for ensure-once (up-from 0 1))) body ...)) ((%loop o (clauses ...) body ...) (ensure-for-clause #f () (clauses ...) o loop-name body ... (loop-name))) ((%loop o name (clauses ...) . body) (ensure-for-clause #f () (clauses ...) o name . body)))) ;; This ensures that the first subloop has at least ONE for clause. If none is found ;; we add a dummy one! (define-syntax ensure-for-clause (syntax-rules (:for :acc :break :subloop :when :unless :final DONE) ((_ DONE clauses () orig name . body) (cl orig name (()) (()) (()) (()) (()) () ((() ())) (()) clauses . body)) ;; Ensure that a subloop gets run at least once ((_ #f (clauses ...) () . rest) (ensure-for-clause DONE ((:for dummy (up-from 0 1)) clauses ...) () . rest)) ((_ #f (done ...) (:subloop . clauses) . rest) (ensure-for-clause DONE (done ... (:for dummy (up-from 0 1)) :subloop . clauses) () . rest)) ((_ #f (done ...) ((:when test) . clauses) . rest) (ensure-for-clause DONE (done ... (:for dummy (up-from 0 1)) (:when test) . clauses) () . rest)) ((_ #f (done ...) ((:unless test) . clauses) . rest) (ensure-for-clause DONE (done ... (:for dummy (up-from 0 1)) (:unless test) . clauses) () . rest)) ((_ #f (done ...) ((:break test) . clauses) . rest) (ensure-for-clause DONE (done ... (:for dummy (up-from 0 1)) (:break test) . clauses) () . rest)) ((_ #f (done ...) ((:final test) . clauses) . rest) (ensure-for-clause DONE (done ... (:for dummy (up-from 0 1)) (:final test) . clauses) () . rest)) ((_ _ (done ...) ((:for . stuff) . clauses) . rest) (ensure-for-clause DONE (done ... (:for . stuff) . clauses ) () . rest)) ;; for the rest the clause type does not matter ((_ ? (done ...) (clause . clauses) . rest) (ensure-for-clause ? (done ... clause) clauses . rest)))) (define-syntax push-new-subloop (syntax-rules () ((_ orig name (lets ...) (accs ...) (vars ...) (checks ...) (refs ...) f (((ff-cur ...) (ff-above ...)) . ff-rest) (user ...) clauses . body) (cl orig name (() lets ...) (() accs ...) (() vars ...) (() checks ...) (() refs ...) f ;; propagate :for-finalizers to subloop to be run in case of :break ((() (ff-cur ... ff-above ...)) ((ff-cur ...) (ff-above ...)) . ff-rest) (() user ...) clauses . body)))) ;; cl sorts all the clauses into subloops and positions everything where it should be. (define-syntax cl (syntax-rules (=> :for :acc :when :unless :break :final :bind :subloop) ((_ orig name l a v c r f ff user () => expr . body) (emit orig name l a v c r f ff user expr . body)) ((_ orig name l a v c r f ff user () . body) (emit orig name l a v c r f ff user (if #f #f) . body)) ;; user bindings ((_ orig name l a v c r f ff ((cur-ul ...) . ul-rest) ((:bind (id id* ... expr) ...) clauses ...) . body) (cl orig name l a v c r f ff ((cur-ul ... (:bind (id id* ... expr) ...)) . ul-rest) (clauses ...) . body)) ;; user-whens ((_ orig name l a v c r f ff ((cur-uw ...) . uw-rest) ((:when test) clauses ...) . body) (cl orig name l a v c r f ff ((cur-uw ... (:when test)) . uw-rest) (clauses ...) . body)) ((_ orig name l a v c r f ff ((cur-uw ...) . uw-rest) ((:unless test) clauses ...) . body) (cl orig name l a v c r f ff ((cur-uw ... (:when (not test))) . uw-rest) (clauses ...) . body)) ;; USER BREAKS ;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards. ((_ orig name l a v c r f ff ((cur-ub ...) . ub-rest) ((:break expr) clauses ...) . body) (cl orig name l a v c r f ff ((cur-ub ... (:break expr)) . ub-rest) (clauses ...) . body)) ;; user final ;; This pushes a #t to the user when expression, thus forcing a subloop if a for-clause is found afterwards. ((_ orig name l a v c r f ff ((cur-uw ...) . uw-rest)((:final expr) clauses ...) . body) (cl orig name l a v c r f ff ((cur-uw ... (:final expr)) . uw-rest) (clauses ...) . body)) ;; Explicit subloop. Shorthand for (:when #t) ((_ orig name l a v c r f ff ((cur-uw ...) . uw-rest) (:subloop clauses ...) . body) (cl orig name l a v c r f ff ((cur-uw ... :nop) . uw-rest) (clauses ...) . body)) ;; :for-clauses ;; found a for clause when we have a :when or :unless clause. Push new subloop ((_ orig name l a v c r f ff ((uw uw* ...) . uw-rest) ((:for for-rest ...) clauses ...) . body) (push-new-subloop orig name l a v c r f ff ((uw uw* ...) . uw-rest) ((:for for-rest ...) clauses ...) . body)) ;; For clause with a sequence creator. ((_ orig name l a v c r f ff user((:for id ids ... (iterator source ...)) clauses ...) . body) (valid-clause? iterator :for ((id ids ...) (source ...)) cl-next/for orig name l a v c r f ff user (clauses ...) . body)) ;; accumulator clause ((_ orig name l a v c r f ff user ((:acc id ids ... (accumulator source ...)) clauses ...) . body) (valid-clause? accumulator :acc ((id ids ...) (source ...)) cl-next/acc orig name l a v c r f ff user (clauses ...) . body)) ;; ERROR HANDLING? ((_ orig name l a v c r f ff user (clause . rest) . body) (syntax-error "Invalid clause in loop" clause orig)) )) ;; HOLY CODE-DUPLICATION-BATMAN! ;; cl-next/acc integrates all the bindings by an :acc clause. The complexity comes from pushing :acc-clauses ;; into the outer loops. Since accumulators need to be available in the (final-fun ...), they need to be visible also ;; in the outer loops if the loop exits there. (define-syntax cl-next/acc (syntax-rules (:acc) ;; :acc clause without any subloops ((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...) orig name ((lets ...)) ((accs ...)) vars checks ((refs ...)) (finals ...) ff ul uw ((cur-ub ...) . ub-rest) uf clauses . body) (cl orig name ((lets ... new-lets ...)) ((accs ... (accvar accinit accupdate) ...)) vars checks ((refs ... new-refs ...)) (finals ... new-finals ...) ff ul uw ((cur-ub ... new-checks ...) . ub-rest) uf clauses . body)) ;; We have ONE subloop! ((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...) orig name (lets ... (outermost-lets ...)) ((accs ...) ((oldacc oldinit oldupdate) ...)) vars checks ((refs ...) . refs-rest) (finals ...) ff ul uw ((cur-ub ...) . ub-rest) uf clauses . body) (cl orig name (lets ... (outermost-lets ... new-lets ...)) ((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accinit accvar) ...)) vars checks ((refs ... new-refs ...) . refs-rest) (finals ... new-finals ...) ff ul uw ((cur-ub ... new-checks ...) . ub-rest) uf clauses . body)) ;; We have several subloops! ((_ (new-lets ...) ((accvar accinit accupdate) ...) (new-checks ...) (new-refs ...) (new-finals ...) orig name (lets ... (outermost-lets ...)) ((accs ...) ((oldacc oldinit oldupdate) ...) ... ((oldestacc oldestinit oldestupdate) ...)) vars checks ((refs ...) . refs-rest) (finals ...) ff ul uw ((cur-ub ...) . ub-rest) uf clauses . body) (cl orig name (lets ... (outermost-lets ... new-lets ...)) ((accs ... (accvar accvar accupdate) ...) ((oldacc oldinit oldupdate) ... (accvar accvar accvar) ...) ... ((oldestacc oldestinit oldestupdate) ... (accvar accinit accvar) ...)) vars checks ((refs ... new-refs ...) . refs-rest) (finals ... new-finals ...) ff ul uw ((cur-ub ... new-checks ...) . ub-rest) uf clauses . body)))) ;; Integrating for clauses is not as involved, since they only want to be introduced into the current ;; loop. Any propagation of for finalizers (ff) is done by push-new-subloop (define-syntax cl-next/for (syntax-rules () ((_ (new-lets ...) (new-vars ...) (new-checks ...) (new-refs ...) (new-for-finals ...) orig name ((lets ...) . lets-rest) accs ((vars ...) . vars-rest) ((checks ...) . checks-rest) ((refs ...) . refs-rest) finals (((ff-cur ...) (ff-above ...)) . ff-rest) user clauses . body) (cl orig name ((lets ... new-lets ...) . lets-rest) accs ((vars ... new-vars ...) . vars-rest) ((checks ... new-checks ...) . checks-rest) ((refs ... new-refs ...) . refs-rest) finals (((ff-cur ... new-for-finals ...) (ff-above ...)) . ff-rest) user clauses . body)) ((cl err ...) (cl err ...)))) (define-syntax user (syntax-rules (:when :bind :break :final :nop) ((_ final-expr next outer () body ...) (begin body ...)) ((_ f n o (:nop . rest) . body) (user f n o rest . body)) ((_ f n o ((:bind pairs ...) . rest) . body) (let (pairs ...) (user f n o rest . body))) ((_ f n o ((:when test) . rest) . body) (cond (test (user f n o rest . body)) (else n))) ((_ (final-expr ...) n o ((:break expr) . rest) . body) (cond (expr final-expr ...) (else (user (final-expr ...) n o rest . body)))) )) ;; If there are no subloops, we emit to the simple case (define-syntax emit (syntax-rules () ((_ orig name (one) . rest) (emit-one orig name (one) . rest)) ((_ orig name . rest) (emit-many/first #f name . rest)))) (define-syntax emit-one (syntax-rules () ((_ orig name ((lets ...)) (((accvar accinit accstep) ...)) (((var init step) ...)) ((checks ...)) ((refs ...)) ((final-binding final-value) ...) (((ff-cur ...) (ff-above ...))) ((us ...)) final-expr . body) (let* ((final-fun (lambda (final-binding ...) final-expr)) lets ...) (let loop ((accvar accinit) ... (var init) ...) (if (or checks ...) (begin ff-cur ... (final-fun final-value ...)) (ref-let (refs ...) (user (ff-above ... ff-cur ... (final-fun final-value ...)) (loop accvar ... step ...) #f (us ...) (let-kw-form name (final-fun final-value ...) () (loop (accvar accstep) ... (var step) ...) (let () (if #f #f) . body)))))))))) ;; Emit-many/first emits the outermost let loop and binds the final lambda. (define-syntax emit-many/first (syntax-rules () ((_ orig name (lets-next ... (lets ...)) (accs-next ... ((accvar accinit accstep) ...)) (vars-next ... ((var init step) ...)) (checks-next ... (checks ...)) (refs-next ... (refs ...)) ((final-binding final-value) ...) (ff-next ... ((ff-cur ...) ())) (us-next ... (us ...)) final-expr . body) (let* ((final-fun (lambda (final-binding ...) final-expr)) lets ...) (let outer-loop ((accvar accinit) ... (var init) ...) (if (or checks ...) (begin ff-cur ... (final-fun final-value ...)) (ref-let (refs ...) (user (ff-cur ... (final-fun final-value ...)) (outer-loop accvar ... step ...) #f (us ...) (emit-many/rest orig name (outer-loop accstep ... step ...) (lets-next ...) (accs-next ...) (vars-next ...) (checks-next ...) (refs-next ...) ;; THIS IS NOW A COMPLETE call to final (final-fun final-value ...) (ff-next ...) (us-next ...) . body))))))))) (define-syntax emit-many/rest (syntax-rules () ;; match innermost loop ((_ orig name outer ((lets ...)) (((accvar accinit accstep) ...)) (((var init step) ...)) ((checks ...)) ((refs ...)) final (((ff-cur ...) (ff-above ...))) ((us ...)) . body) (let* (lets ...) (let innermost-loop ((accvar accinit) ... (var init) ...) (if (or checks ...) (begin ff-cur ... outer) (ref-let (refs ...) (user (ff-cur ... ff-above ... final) (innermost-loop accstep ... step ...) #f (us ...) (let-kw-form name final () (innermost-loop (accvar accstep) ... (var step) ...) . body))))))) ;; Any intermediate loops ((_ orig name outer (next-lets ... (lets ...)) (next-accs ... ((accvar accinit accstep) ...)) (next-vars ... ((var init step) ...)) (next-checks ... (checks ...)) (next-refs ... (refs ...)) final (next-ff ... ((ff-cur ...) (ff-above ...))) (us-next ... (us ...)) . body) (let* (lets ...) (let intermediate-loop ((accvar accinit) ... (var init) ...) (if (or checks ...) (begin ff-cur ... outer) (ref-let (refs ...) (user (ff-cur ... ff-above ... final) (intermediate-loop accstep ... step ...) #f (emit-many/rest orig name (intermediate-loop accstep ... step ...) (next-lets ...) (next-accs ...) (next-vars ...) (next-checks ...) (next-refs ...) final (next-ff ...) (us-next ...) . body))))))))) (define-syntax forify (syntax-rules (%acc) ((_ orig name () ((%acc . acc-rest) . argsrest) . body) (forify* orig name () ((:for ensure-once (up-from 0 1)) (%acc . acc-rest) . argsrest) . body)) ((_ . rest) (forify* . rest)))) (define-syntax forify* (syntax-rules (:for :acc :when :unless :break :final :subloop :let :let* %acc) ((_ o n done-clauses () . body) (%loop o n done-clauses . body)) ((_ o n (s ...) ((:for c-rest ...) clauses ...) . body) (forify* o n (s ... (:for c-rest ...)) (clauses ...) . body)) ((_ o n (s ...) ((:when expr) clauses ...) . body) (forify* o n (s ... (:when expr)) (clauses ...) . body)) ((_ o n (s ...) ((:unless expr) clauses ...) . body) (forify* o n (s ... (:unless expr)) (clauses ...) . body)) ((_ o n (s ...) ((:break expr) clauses ...) . body) (forify* o n (s ... (:break expr)) (clauses ...) . body)) ((_ o n (s ...) ((:final expr) clauses ...) . body) (forify* o n (s ... (:final expr)) (clauses ...) . body)) ((_ o n (s ...) (:subloop clauses ...) . body) (forify* o n (s ... :subloop) (clauses ...) . body)) ((_ o n (s ...) ((:let id id* ... expr) clauses ...) . body) (forify* o n (s ... (:let id id* ... expr)) (clauses ...) . body)) ((_ o n (s ...) ((:let* id id* ... expr) clauses ...) . body) (forify* o n (s ... (:let* id id* ... expr)) (clauses ...) . body)) ((_ o n (s ...) ((%acc c-rest ...) clauses ...) . body) (forify* o n (s ... (:acc c-rest ...)) (clauses ...) . body)) ((_ o n (s ...) ((:acc c-rest ...) clauses ...) . body) (syntax-error "Accumulating clauses are not allowed in simplified loop forms." o)) ((_ o n (s ...) ((id id* ... (iterator source ...)) clauses ...) . body) (forify* o n (s ... (:for id id* ... (iterator source ...))) (clauses ...) . body)))) (define-syntax loop/list (syntax-rules () ((_ (clauses ...) body ...) (forify (loop/list (clauses ...) body ...) loop-name () (clauses ...) => '() (cons (let () body ...) (loop-name)))))) (define-syntax loop/sum (syntax-rules () ((_ (clauses ...) body ...) (forify (loop-sum (clauses ...) body ...) loop-name () (clauses ... (%acc acc (summing (let () body ...)))) => acc (loop-name))))) (define-syntax loop/product (syntax-rules () ((n (clauses ...) body ...) (forify (n (clauses ...) body ...) product-loop () (clauses ... (%acc acc (multiplying (let () body ...)))) => acc (product-loop))))) (define sentinel (list 'unique)) ;; TODO: maybe have a look at the expansion of this. It seems weird. (define-syntax loop/first (syntax-rules () ((n (clauses ...) body ...) (forify (n (clauses ...) body ...) loop/first () (clauses ... (:final #t)) => #f body ...)))) (define-syntax loop/last (syntax-rules () ((n (clauses ...) body ...) (forify (n (clauses ...) body ...) loop-name () (clauses ... (%acc acc (folding sentinel))) => (if (eq? sentinel acc) #f acc) (let ((result (let () body ...))) (loop-name (=> acc result))))))) (define-syntax loop/and (syntax-rules () ((n (clauses ...) body ...) (forify (n (clauses ...) body ...) and-loop () (clauses ... (%acc acc (folding #t))) => acc (let ((res (let () body ...))) (and res (and-loop (=> acc res)))))))) (define-syntax loop/or (syntax-rules () ((n (clauses ...) body ...) (forify (n (clauses ...) body ...) or-loop () (clauses ...) => #f (or (let () body ...) (or-loop))))))